T₈-OSS-Ethyldiphenylphosphine: A New Functional Oligosilsesquioxane Ligand

Vincent Ruffieux, Günter Schmid,* Pierre Braunstein, and Jacky Rosé

Dedicated to Professor Walter Siebert on the occasion of his 60th birthday

Abstract: Oligosilsesquioxanes (OSS) may be considered as molecular sections of silica. The incompletely condensed (cyclopentyl)₇T₇(OH)₃ (T = SiO_{3/2}) has been used to generate a phosphine-functionalized T₈-OSS system by reaction with 2-(trichlorosilyl)diphenylphosphinoethane. The resulting model molecule (cyclopentyl)₇T₈(CH₂)₂PPh₂ (1) is well suited to coordinate to transition metal clusters via the phosphorous atom. We selected the tetrahedral bimetallic cluster [HFeCo₃- $(CO)_{12}$]. Depending on the stoichiometry, one or two phosphine ligands could be

Keywords

clusters · catalyst models · oligosilsesquioxanes · silica · supported complexes added to the cobalt atoms, with substitution of CO molecules. Owing to the cyclopentyl substituents, the resulting complexes [HFeCo₃(CO)₁₁{Ph₂P(CH₂)₂T₈-(cyclopentyl)₇}] (2) and [HFeCo₃-(CO)₁₀{Ph₂P(CH₂)₂T₈(cyclopentyl)₇}₂] (3) are soluble in numerous organic solvents. Therefore, they could be completely characterized by ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectroscopy.

Introduction

Heterogeneous silica-supported transition metal complexes play a very important role in academic research and in the chemical industry.^[1] Oligosilsesquioxanes (OSS) (Figure 1) possess strong structure similarities with silica and may thus serve as valuable molecular models, accessible to various physical methods of investigations.^[2-5]

The incomplete T_7 -OSS systems (Figure 1 a) deserve particular attention, since their structure and their surface silanol density are very close to that of the cristobalite form of silica.^[4] Furthermore, they can undergo corner-capping reactions with inorganic^[6] (e.g. transition metal complexes) or organic Lewis acids, in exactly the same way as silica. It is therefore possible to directly compare the random silica-supported catalysts and their analogous, well-defined OSS-supported ones.

There are two ways of binding a transition metal complex or a cluster to the T_7 -OSS unit, directly by using the trisilanol part of the molecule^[6] or through a ligand covalently attached to the OSS moiety by reaction of the trisilanol moiety with an appropriate group, such as a functionalized silane. The latter method

[*] G. Schmid, V. Ruffieux Institut für Anorganische Chemie, Universität Essen Universitätsstr. 5–7, D-45117 Essen (Germany) Fax: Int. code + (201)183-2402 e-mail: guenter.schmid@ uni-essen.de
P. Braunstein, J. Rosé Laboratoire de Chimie de Coordination, URA 416 CNRS Université Louis Pasteur
4. rue Blaise Pascal, F-67070 Strasbourg (France) Fax: Int. code + (388)418-6030 e-mail: braunst@chimie.u-strasbg.fr

Figure 1. Oligosilsesquioxanes (OSS): a) The incompletely condensed (cyclopentyl), $_{7}T_{7}(OH)_{3}$. b) The completely condensed (phenyl), $_{8}T_{8}$. c) The completely condensed H₈T₈. The notation T refers to the repeating unit RSiO_{3.2}.

should allow direct comparison with transition metal complexes or clusters anchored to functionalized silica surfaces.^[1b, 7] A wide range of silanes containing reactive functional groups, such as amines, phosphines, or thiols, are commercially or synthetically available. It is also possible to match virtually every possible distance between the metal catalyst and the OSS moiety by modifying the length of the carbon chain, as in the case of catalysts supported on functionalized silica surfaces. Only monofunctionalized OSS can be obtained in this way. Polyfunctional molecules have been prepared in an important study on aryl and vinyl substitution reactions^[9,10] (Figure 1 b) and hydrosilylation^[11] (Figure 1 c) of completely condensed T₈-OSS.^[8]

Here we focus our attention on the incompletely condensed $(cyclopentyl)_7T_7(OH)_3$ system (Figure 1 a) and its reaction with 2-(trichlorosilyl)diphenylphosphinoethane, in order to obtain a well-defined, perfectly characterized prototype for monofunctionalized T_8 -OSS systems. We then treat this cage compound with the bimetallic cluster [HFeCo₃(CO)₁₂],^[12] whose ability to undergo substitution reactions with phosphine ligands is well established.^[13] The resulting new compounds can serve as models for bimetallic clusters or colloids supported on functionalized silica surfaces.

Results and Discussion

The incompletely condensed (cyclopentyl)₇T₇(OH)₃ is the main product of the slow hydrolysis of (cyclopentyl)SiCl₃ in water/ acetone.^[14] In contrast to the preparation of the well-known (cyclohexyl)₇T₇(OH)₃, which takes 3 to 12 months,^[2] (cyclopentyl)₇T₇(OH)₃ can be isolated after an acceptable period of 3 to 15 days. (Cyclopentyl)SiCl₃ was obtained from the hydrosilylation reaction of cyclopentene and trichlorosilane with H₂PtCl₆ as the catalyst (Scheme 1).^[15] The functionalized silane 2-(trichlorosilyl)diphenylphosphinoethane was synthesized by the photochemical addition of PPh₂H to vinyltrichlorosilane.^[16] The reaction of 2-(trichlorosilyl)diphenylphosphinoethane and (cyclopentyl)₇T₇(OH)₃ in the presence of pyridine afforded the completely condensed compound **1**.

Compound 1 was fully characterized by IR spectroscopy, ¹H, ³¹P{¹H}, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectroscopy, and by elemental analysis (see Experimental Section). The typical ¹H NMR pattern (phenyl protons omitted) is shown in Figure 2 (left). Figure 2 (right) gives the ¹³C NMR spectrum of the cyclopentyl carbon atoms bound to Si atoms, whose 1:3:3 ratio is clearly accounted for by the C_{3v} symmetry of the molecule.

Abstract in German: Oligosilsesquioxane (OSS) können als molekulare Ausschnitte aus dem Siliciumdioxidgitter betrachtet werden. Aus dem unvollständig kondensierten (cyclopentyl)₇- $T_7(OH)_3$ (T = SiO_{3/2}) und 2-(Trichlorsilyl)diphenylphosphinoethan wurde ein Phosphin-funktionalisiertes T_s-OSS hergestellt. Die resultierende Modellverbindung (cyclopentyl)₇ T_8 -(CH₂)₂PPh₂ 1 ist gut geeignet, über das Phosphoratom Übergangsmetallcluster zu koordinieren. Wir wählten hierzu den tetraedischen Dimetallcluster [HFeCo₃(CO)₁₂]. In Abhängigkeit von der Stöchiometrie wurden ein oder zwei Phosphinliganden unter Substitution von CO-Molekülen an die Cobaltatome koordiniert. Die resultierenden Komplexe [HFeCo3- $(CO)_{11} \{Ph_2P(CH_2)_2T_8(cyclopentyl)_2\} = 2$ bzw. $[HFeCo_3]$ $(CO)_{10}$ { $Ph_2P(CH_2)_2T_8(cyclopentyl)_7$ } 3 sind dank der Cyclopentylsubstituenten in organischen Lösungsmitteln löslich und konnten somit ¹H-, ¹³C-, ²⁹Si- und ³¹P-NMR-spektroskopisch vollständig charakterisiert werden.

Scheme 1. Reaction scheme for the formation of (cyclopentyl)₇T₈(CH₂)₂PPh₂ (1).

Figure 2. Left: The alkyl signals in the ³H NMR spectrum of (cyclopentyl),- $T_7(OH)_3$ (1); the CH_2 -Si and CH_2 -P resonances appear at $\delta = 0.66$ and 2.07, respectively. Right: ¹³C NMR spectrum of the cyclopentyl C atoms bound to Si, showing a 1:3:3 pattern of the three resonances at $\delta = 22.25$, 22.23, and 22.20.

Compound 1 dissolves readily in apolar or weakly polar solvents, such as *n*-hexane, cyclohexane, benzene, toluene, chloroform, or dichloromethane, but is insoluble in ethanol, acetone, or acetonitrile. It is thermally stable up to 100° C. The phosphine group undergoes slow oxidation in the presence of air and water. Despite the similarity of the siloxane structure with that of silica, 1 can be purified by chromatography on silica gel. This is probably possible due to the presence of the apolar cyclopentyl groups.

The CO substitution reaction of 1 with the bimetallic cluster $[HFeCo_3(CO)_{12}]$ (Figure 3) in equimolar amounts at room temperature in dichloromethane afforded the violet monosubstituted compound 2 (Scheme 2), which was characterized by IR

FULL PAPER

Figure 3. Structure of the bimetallic tetrahedral cluster $[HFeCo_3(CO)_{12}]$.

spectroscopy, ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectroscopy, and by elemental analysis. Spectroscopic data indicated that a cobaltbound axial CO ligand had been selectively substituted, as observed with other monodentate phosphine ligands.^[17] This is accounted for by the high *trans*labilizing influence of the Fe-Co bond.^[18]

After purification by column chromatography, **2** was treated with a further equivalent of **1** in toluene at 60 °C for 12 h to give the disubstituted compound **3** (Scheme 2). By comparison with data for [HFeCo₃(CO)₁₀(PR₃)₂] clusters, it is clear that the second phosphine ligand is also bound to cobalt, in an axial position.

The complete characterization of **2** and **3** is given in the Experimental Section. The ¹H NMR signals corresponding to the CH_2 -P and CH_2 -Si protons in **3** exhibit a remarkable "mirror" pattern, which arises from the fact that these protons do

Scheme 2. Reaction of 1 with $[HFeCo_3(CO)_{12}]$ yielding monosubstituted 2 and disubstituted 3.

not lie in the mirror plane of the C_s molecule. The spin system must therefore be described as AA'BB', with four magnetically inequivalent protons. The ¹³C NMR spectrum exhibits the same type of pattern for the phenyl carbons. In contrast, no such pattern is observed for the carbons of the OSS moiety. This is probably due to the high flexibility of the ethyl group, which allows the ligand to achieve a conformation that minimizes steric hindrance.

Conclusion

The new T_8 -OSS-ethyldiphenylphosphine complexes described here seem to be valuable prototype models for transition metal complexes or clusters anchored on silica surfaces. Despite their apparently complicated structure, complete characterization has been achieved in a relatively straightforward manner. Since the OSS moiety is quite sensitive to the reaction conditions, it is necessary to check the integrity of the OSS structure after each reaction. For this purpose, ¹³C and ²⁹Si NMR spectroscopy are most suitable methods, but the latter is more time-consuming.

The ability of T_8 -OSS-ethyldiphenylphosphine to readily complex metal centers with low oxidation state in a selective way

was clearly demonstrated in this work. The (cyclopentyl)₇ $T_7(OH)_3$ is a very interesting precursor for the design of functional T_8 -OSS systems for the following reasons:

- 1) It can be prepared in good yields on an acceptable timescale.
- It is readily soluble in most common organic solvents, except those of high polarity (e.g., water, alcohols, acetone, and acetonitrile).
- 3) It is thermally stable up to 100 °C and not sensitive to air or moisture.

Experimental Section

General methods: Air-sensitive reagents and products were manipulated under a nitrogen atmosphere using standard Schlenk techniques. All solvents were dried and purified using standard procedures. NMR spectra were recorded with a Bruker DPX or DMX instrument operating at 300 MHz for ¹H NMR spectroscopy (75.5 MHz for ¹³C{¹H}, 121.5 MHz for ³¹P{¹H}, and 59.6 MHz for ²⁹Si{¹H}). IR spectra were recorded on a Perkin-Elmer FT-IR 1600 spectrometer. Elemental analyses were carried out by the analytical service of the Chemistry Department of the University of Essen (Germany).

PPh₂H,^[19] (cyclopentyl)SiCl₃,^[15] and [HFeCo₃(CO)₁₂]:^[12] These starting materials were synthesized by well-described literature procedures.

(Cyclopentyl)₇T₇(OH)₃: According to a modified literature procedure.^[14] the reaction mixture, consisting of (cyclopentyl)SiCl₃, acetone, and water, was refluxed under nitrogen for two weeks with a condensor maintained at -20 °C by a circulating bath of methanol. In order to simplify the filtration, the resulting solid was allowed to settle, and the clear brownish-red acetone/water solution was transferred to another flask. The remaining solution was filtered. The solid cake was triturated and washed many times with acetone, and finally dried in vacuo. The crude product was dissolved in dichloromethane, and the solution was filtered to remove the insoluble (cyclopentyl)₈T₈. The dichloromethane solution was concentrated to ca. 50 mL and layered with ca. 200 mL of acetonitrile, whereupon (cyclopentyl)₇-T₇(OH)₃ precipitated. After filtration and washing with small amounts of acetonitrile, the pure (cyclopentyl)₂-T₇(OH)₃ was dried overnight under vacu-

um. Yield: 81 %. The purity of the product was monitored by comparison of the NMR data and elemental analysis (C 47.98 (calcd 48.02), H 7.68 (calcd 7.60)).

Ph₂P(CH₂)₂SiCl₃ was prepared by a modification of the procedure described by Holmes-Smith:^[16] Diphenylphosphine (10.7 g, 10 mL, 57.5 mmol) and vinyltrichlorosilane (14.7 g, 11.6 mL, 90.9 mmol) were dissolved in dry cyclohexane (100 mL, UV/Vis grad). The solution was transferred through a canula into a 100 mL quartz photochemical reactor and irradiated with stirring for 12 h at 20 °C with a medium-pressure Hg lamp. The solution was then transferred under nitrogen into a 250 mL round-bottom flask. Volatiles were removed under vacuum. The crude product was worked up by distillation (173–174 °C/0.1 mm Hg) to yield 17.1 g (85%) of pure product.

 $(Cyclopentyl)_{7}T_{8}(CH_{2})_{2}PPh_{2}$ (1): $Ph_{2}P(CH_{2})_{2}SiCl_{3}$ (4.0 g, 11.4 mmol) was placed in a 500 mL Schlenk round-bottom flask filled with nitrogen. Benzene (250 mL) was added, followed by (cyclopentyl)₇T₇(OH)₃ (10.0 g, 11.4 mmol) and pyridine (2.9 mL, 3.48×10^{-2} mol), under vigorous stirring. The solution was stirred for 12 h at room temperature, then filtered through a 10 cm-pad of Celite and a 5 cm-pad of silica gel, in order to remove pyridine HCl. The filtration pad was washed with copious amounts of dry benzene. The solution was concentrated to ca. 50 mL and carefully layered with ca. 200 mL acetonitrile, whereupon (cyclopentyl)₇T₈(CH₂)₂PPh₂ precipitated. The filtration cake was washed with acetonitrile and dried in vacuum. Yield: 11.3 g (89%). IR: $\tilde{v} = 3071$ (w), 3053 (w; vPh), 2950 (s), 2865 (s; vAlk), 1481 (w; vPPh), 1434 (w; vPCH₂), 1108 (vs; v_{asym}Si-O-Si), 739 (w), 696 (w; vSiCH₂), 506 (m; v_{sym} Si-O-Si). ¹H NMR (CDCL₃, ext. ref. TMS): $\delta = 0.67$ (m, 2H, CH₂-Si), 0.90-1.02 (complex m, 7H, CH pentyl), 1.47-1.73 (complex m, 56H, CH₂ pentyl), 2.07 (m, 2H, CH₂-P), 7.30-7.39 (m, 10H, Ph). ¹³C{¹H} NMR $(CDCl_3, ext. ref. TMS): \delta = 8.05 (d, CH_2 - Si, 11.8 Hz), 20.82 (d, CH_2 - P)$ 13.3 Hz), 22.20, 22.23, 22.25 (s, CH pentyl, 3:3:1), 26.95, 26.99, 27.00, 27.28, 27.29, 27.35 (s, CH₂ pentyl, 3:3:1:3:1:3), 128.36 (d, C³ phenyl, ${}^{3}J_{P-C-C-C} = 6.4 \text{ Hz}$, 128.44 (s, C⁴ phenyl), 132.68 (d, C² phenyl, ${}^{2}J_{P-C-C} = 18.0 \text{ Hz}$, 138.67 (d, $J_{P-C} = 14.0 \text{ Hz}$). ${}^{29}\text{Si}\{^{1}\text{H}\}$ NMR (C₆D₆, ext. ref. TMS): $\delta = -65.86, -65.91, -65.94, -66.59 (3:1:3:1).^{31}P\{^{1}H\}$ NMR (CDCl₃, ext. ref. H_3PO_4): $\delta = -8.5$. $C_{49}H_{77}O_{12}PSi_8$ (1113.80): calcd. C 52.84, H 6.97; found C 52.57, H 6.88.

[HFeCo₃(CO)₁₁{Ph₂P(CH₂)₂T₈(cyclopentyl)₇}] (2): [HFeCo₃(CO)₁₂]

 $(0.100 \text{ g}, 1.75 \times 10^{-4} \text{ mol})$ was dissolved in dry dichloromethane (50 mL) under nitrogen. (Cyclopentyl)₇ T_8 (CH₂)₂PPh₂ (195 mg, 1.75×10^{-4} mol) was added. The solution was stirred until CO evolution had ceased (ca. 15 min). The solvent was completely evaporated. The violet crude product was purified by chromatography on silica gel with dichloromethane/hexane 7:3. Yield: 0.238 g (82%). $IR_{\nu CO}$ (CH₂Cl₂): $\tilde{\nu} = 2077$ (m), 2034s, 2007 (m), 1966 (w; terminal CO), 1862 (m), 1847 (m; bridging CO). ¹H NMR: $\delta = -21.26$ (μ_3-H) , 0.49 (m, 2H, CH, -Si), 0.82-1.02 (m, 7H, CH pentyl), 1.47-1.73 (m, 56 H, CH₂ pentyl), 2.24 (m, 2H, CH₂-P), 7.28-7.48 (m, 10H, Ph). ${}^{13}C{}^{1}H{}^{1}NMR: \delta = 5.80 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 22.14, 22.15, 22.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.26 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.3 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.14 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.14 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.14 Hz), 23.14, 23.15 (CH_2 - Si, {}^{2}J_{C-P} = 5.14 Hz), 23.14 (CH_2 - SI, {}$ pentyl, 3:3:1), 24.55 (CH_2 -P, J_{C-P} = 22.2 Hz), 26.92, 26.97, 27.00, 27.25, 27.29, 27.33 (CH₂ pentyl, 3:3:1:3:1:3), 129.04 (d, Ph, $C^{3.3'}$ ${}^{3}J_{C-P} = 9.8 \text{ Hz}$, 130.76 (d, Ph, $C^{4,4'}$, ${}^{4}J_{C-P} = 2.3 \text{ Hz}$), 131.44 (d, Ph, $C^{1,1'}$, $J_{C-P} = 40.0 \text{ Hz}$, 131.88 (d, Ph, $C^{2, 2'}$, ${}^{2}J_{C-P} = 9.8 \text{ Hz}$). ${}^{31}P{}^{1}H{}$ NMR: 35.1 $(\Delta v_{1/2} = 1700 \text{ Hz})$. C₆₀H₇₈O₂₃PSi₈FeCo₃ (1655.57) calcd. C 43.53, H 4.75; found C 43.60, H. 4.85.

[HFeCo₃(CO)₁₀{Ph₂P(CH₂)₂T₈(cyclopentyl)₇}₂] (3): Compound 2 (100 mg, 6.04×10^{-5} mol) was dissolved in dry toluene (50 mL) under nitrogen, and 1 (67 mg, 6.04×10^{-5} mol) was added. The solution was stirred for 12 h at 60 °C. After evaporation of the solvent, the green crude product was purified by chromatography on silica gel with dichloromethane/hexane 1:9. Yield 0.101 g (61%).

Figure 4.

IR_{vco} (CH₂Cl₂): \tilde{v} = 2051 (m), 2020 (s), 1987 (s), 1953 (w; terminal CO), 1837 (m), 1821 (w; bridging CO). ¹H NMR (Figure 4, left): δ = − 21.42 (μ_3 -H), 0.37, 0.52 (m, 4H, H^{2A} , H^{2B} , $H^{2A'}$, H^{2B}), 0.82–1.03 (m, 14H, CH pentyl), 1.47–1.73 (m, 112H, CH₂ pentyl), 2.36, 2.60 (m, 4H, H^{1A} , H^{1B} , $H^{1A'}$, $H^{1B'}$), 6.65–7.43 (m, 20H, Ph^A, Ph^B, Ph^{A'}, Ph^{B'}). ¹³C[¹H] NMR (Figure 4, right): δ = 5.88 (CH₂-Si, ²J_{C-P} = 5.4 Hz), 22.16, 22.20, 22.26 (CH pentyl, 3:3:1), 24.40 (CH₂-P, J_{C-P} = 24.3 Hz), 26.94, 27.00, 27.28, 27.34 (CH₂ pentyl, 3:4:4:3), 128.48 (t, Ph, C^{3A, 3A', 3B, 3B', ³J_{C-P} = 8.8 Hz), 129.77, 129.95 (s, Ph, C^{4A}, C^{4B}), 132.07, 132.34 (d, C^{2A, 2A'}, C^{2B, 2B'}, J_{C-P} = 9.2 Hz, ²J_{C-P} = 10.1 Hz), ³¹P{⁴}₁H} NMR: δ = 33.3 ($\Delta v_{1/2}$ = 730 Hz). C₁₀₈H₁₅₅O₃₄P₂Si₁₆FeCo₃ (2741.35) calcd. C 47.32, H 5.70; found C 47.19, H 5.80.

Received: December 13, 1996 [F 546]

- [1] a) Y. I. Yermakov, B. N. Kuznetsov, V. A. Zahkharov, Catalysis by Supported Complexes, Elsevier, New York, 1981; b) F. R. Hartley, Supported Metal Complexes, Reidel, Boston, 1985; c) Y. Iwasawa, Tailored Metal Catalysis, Reidel, Boston, 1986; d) P. Braunstein, J. Rosé, in Sterochemistry of Organometallic and Inorganic Compounds (Ed.: I. Bernal), Elsevier, Amsterdam 1988, Vol. III.
- [2] J. F. Brown, Jr., L. H. Vogt, J. Am. Chem. Soc. 1965, 87, 4313.
- [3] J. F. Brown, Jr., J. Am. Chem. Soc. 1965, 87, 4317.
- [4] F. J. Feher, D. A. Newman, J. F. Waltzer, J. Am. Chem. Soc. 1989, 111, 1741.
- [5] F. J. Feher, R. L. Blanski, Makromol. Chem. Macromol. Symp. 1993, 66, 95.
- [6] a) F. J. Feher, J. Am. Chem. Soc. 1986, 108, 3850; b) F. J. Feher, S. L. Gonzalez, J. W. Ziller, Inorg. Chem. 1988, 27, 3440; c) F. J. Feher, K. J. Weller, *ibid.* 1991, 30, 880; d) F. J. Feher, A. Budzichowski, J. W. Ziller, *ibid.* 1992, 31, 5100.
- [7] a) Z. C. Brzezinska, W. R. Cullen, Inorg. Chem. 1979, 18, 3132; b) Z. C.
 Brzezinska, W. R. Cullen, Can. J. Chem. 1980, 58, 745; c) M. G. L. Petrucci,
 A. K. Kakkar, J. Chem. Soc. Chem. Commun. 1995, 1577.
- [8] G. Calzaferri, R. Imhof, K. W. Törnross, J. Chem. Soc. Dalton Trans. 1994, 3123.
- [9] F. J. Feher, K. J. Weller, J. J. Schwab, Organometallics 1995, 14, 2009.
- [10] S. E. Yuchs, K. A. Carrado, Inorg. Chem. 1996, 35, 261
- [11] G. Calzaferri, D. Herren, R. Imhof, Helv. Chim. Act. 1991, 74, 1278.
- [12] P. Chini, L. Colli, M. Peraldo, Gazz. Chim. Ital. 1960, 90, 1005
- [13] a) P. Braunstein, J. Rosé, P. Granger, J. Raya, S.-E. Bouaoud, D. Grandjean, Organometallics 1991, 10, 3686; b) P. Braunstein, L. Mourey, J. Rosé, P. Granger, T. Richert, F. Balegroune, D. Grandjean, Organometallics 1992, 11, 911.
- [14] F. J. Feher, T. A. Budzichowski, R. L. Blanski, K. J. Weller, J. W. Ziller, Organometallics 1991, 10, 2526.
- [15] T. G. Selin, R. West, J. Am. Chem. Soc. 1962, 84, 1863.
- [16] R. D. Holmes-Smith, R. D. Osei, S. R. Stobart, J. Chem. Soc. Perkin Trans. I 1983, 861.
- [17] C. G. Cooke, M. J. Mays, J. Chem. Soc. Dalton Trans. 1975, 455.
- [18] P. Chini, B. T. Heaton, Top. Curr. Chem. 1977, 71, 1.
- [19] G. P. Schiemenz, Chem. Ber. 1966, 99, 514.